Motion Models (cont)

3/15/2018

Computing the Density

» to compute

prob(v — ¥, a; v? + ayw?),
prob(w — @, azv* + a,w?), and
prob(7, asv? + agw?)

use the appropriate probability density function;i.e., for zero-
mean Gaussian noise:

1a2

- bze 2b2
T

prob(a, b?) =

2 3/15/2018

Sampling from the Velocity Motion Model

» suppose that a robot has a map of its environment and it
needs to find its pose in the environment
this is the robot localization problem

several variants of the problem
the robot knows where it is initially

the robot does not know where it is initially

kidnapped robot: at any time, the robot can be teleported to another
location in the environment

» a popular solution to the localization problem is the particle
filter

uses simulation to sample the state density p(xt | u,, xt_l)

3/15/2018

Sampling from the Velocity Motion Model

» sampling the conditional density is easier than computing the
density because we only require the forward kinematics
model

given the control u, and the previous pose x, , find the new pose x,

1

ﬂhv\()aM

4 3/15/2018

Sampling from the Velocity Motion Model

V

X, =x——sIind
@
V
y.=y+—cost
0

Eqs 5.7, 5.8

X =

()

2

=7

)

3/15/2018

Sampling from the Velocity Motion Model

(5

y

')

(xc +%sin(<9+a)At)\
Y. —=cos(0+wAtr)

\
(x)

y

)

6+ w At)

(—2sin @ +Lsin(0 + w At)

~c0s 0 — 2 cos(0 + w Ar)

K w At

*we already derived this for the differential drive!

J

Eqgs 5.9

3/15/2018

Sampling from the Velocity Motion Model

» as with the original motion model, we will assume that given
noisy velocities the robot can also make a small rotation in
place to determine the final orientation of the robot

(\Q\ Svl \lﬁ\" he)

(X (x\ [in0+%sin(¢9+é)At)\

/

V' |=|y|+]| cos@—=cos(0+adAr)

\9’/ \9/ \ C(A)At+];At)

7 3/15/2018

Sampling from the Velocity Motion Model

Algorithm sample_motion_model_velocity(u;, z;_;):

G_Q.A.JQVL ne' K

w = w + sample(as v2+ oy w?)

~

vy = sample(as v? + ag w?) g = senall 1a-plecs rohehe-

U g O ~ ol ¥
v’ =12 — =sinf + = sin(0 + WAL) I t

v ~ v Onarmahe
y' =y + £cosb — = cos(f + wAt) :’S:Aj n'::; 5
' =0+0At+ YA velocdes

return x; = (2/,y', 6"

3/15/2018

Sampling from the Velocity Motion Model

» the function sample(b?) generates a random sample from a
zero-mean distribution with variance b?

» Matlab is able to generate random numbers from many
different distributions

help randn
help stats

9 3/15/2018

How to Sample from Normal or
Triangular Distributions?

» Sampling from a normal distribution

|. Algorithm sample_normal_distribution(b):

112

2. return 57,; Cand(—b, b) S gple) from vnilomn dishbitan

» Sampling from a triangular distribution
|. Algorithm sample_triangular_distribution(d):

2. return \/76 [rand(—b,b) + rand(—b,b)]

Normally Distributed Samples

uﬂﬂﬂ

00,0045

"hnrma1+gn&" —1

0,004

00035 F

0,003 F

00025 F

0,002 F

00015 F

0,001 F

00005 F

0

-5 -4
0,587079, 0,00172555

| 0¢ samples

For Triangular Distribution

"triangle,gnu'

0,007

0,006

0,005

0,004

0,003

0,002

0,001

[}

-5 -4
1,82601, 0,00347146

103 samples

0.0045

"trisnale.onu” —

0,004

0.0035

0,003

0,0025

0,002

0,0015

0,001

0,0005

1,70222, 0,00218351

12

10> samples

0,006

0,005

0,004

0.003

0,002

0,001

-3.22272, 0,00247918

“triangle,gnu’ ——

|0* samples

T GNLIPIO! s mementemeetetsas———— = (= 3

0.,0045

0,004

0.,0035

0,003

0,0025

0,002

0,0015

0,001

0,0005

0
5 -4

1,97191, 0,00221313

"triangle,gnu'

|06 samples

Rejection Sampling

» Sampling from arbitrary distributions

Algorithm sample_distribution(f,d):

|

2 repeat

3 x = rand(—b,b)

4. y = rand(0, max r € (—b,b)})
5. wuntl (y < f(x)

6

. return x thgi\,\] \1(;\,» ! {"ﬂ"‘"
\\(\Q \M ok 1O s

Examples oty o anadka\

/___/J\

14 C"“'ﬂl/"ﬂ \IJG(.L\I No)w\/\ \Macx.(l

3/15/2018

Odometry Motion Model

many robots make use of odometry rather than velocity

odometry uses a sensor or sensors to measure motion to
estimate changes in position over time

typically more accurate than velocity motion model, but
measurements are available only after the motion has been
completed

technically a measurement rather than a control

but usually treated as control to simplify the modeling

odometry allows a robot to estimate its pose

but no fixed mapping from odometer coordinates and world
coordinates

in wheeled robots the sensor is often a rotary encoder

3/15/2018

Example Wheel |

These modules require +5V
and GND to power them, and
provide a 0 to 5V output.They

+ e
€ TR
e PLEFTS

provide +5V output when they .y 7es . 4 Tem
i y Y {9 - oA 8
usee" Whlte, and a OV OUtPUt @uuu.%obotics .{.. euuw.%bbﬁics O
== Connection.com = Connection.com

when they "see" black.

These disks are manufactured out
of high quality laminated color
plastic to offer a very crisp black
to white transition.This enables a
wheel encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/

Odometry Model

» when using odometry, the robot keeps an internal estimate of
its pose at all time

for example, consider a robot moving from pose x;_; to X;

(x")

A X, =y

_ _ o'

-1 =) N
9

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

» the internal pose estimates X;_; to X; are treated as the
control inputs to the robot:

th |A A"*"A’"

_ Jo
u, = | Yrestsd €5 el rech/
ft
(X"
%3 =Y
_ _ o'
= J_/ Y/
7

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

» we require a model of how the robot moves from x;_; to X;

there are an infinite number of possible motions between Xx;_; to Xx;

(x")

A X, =)

_ _ o'

-1 =) N
9

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

» assume the motion is accomplished in 3 steps:

rotate in place by 0,1

5r0t1 (f'\

23 =Y

_ _ 0'

-1 =Y 7/
7,

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

» assume the motion is accomplished in 3 steps:
rotate in place by 0,1

move in a straight line by 0¢qns

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

» assume the motion is accomplished in 3 steps:
rotate in place by 0,1
move in a straight line by 0¢qns

rotate in place by 0, ¢

rot2
5mns
5r0t1 t (f'\
(%) X = f
_ —_ 6'
1| Y N
7

Note: bar indicates values in the robot's internal coordinate system

Odometry Model

, bt b
—) orc)mct&
5,0 = atan2(y-y,¥-X) -8 |- e & by | U
5r0t2 —
X

Note: bar indicates values in the robot's internal coordinate system

Noise Model for Odometry

» the difference between the true motion of the robot and the
odometry motion is assumed to be a zero-mean random

| oY , WO
value w&* v\ w\\r’\ Wy g

5 — 5 =& 2 2 2
frans trans CZ3 5trans +0(4 (5r0t1 +5r0t2)
rot?2 rot2 Yo 52 +a, 52

trans

Sampling from the Odometry Motion Model

4

4

25

suppose you are given the previous pose of the robot in world
coordinates (x;_1) and the most recent odometry from the
robot (u;)

how do you generate a random sample of the current pose of
the robot in world coordinates (x;)?
use odometry to compute motion parameters 0,,¢1, Otrans Orot2
use noise model to generate random true motion parameters
S’I"Otl’ Strans» ST'OtZ

use random true motion parameters to compute a random Xt

- ™
Xg-

——

A

W, =

3/15/2018

ok
. A
Sample Odometry Motion Mo}e’l/ or®" v g

e i
l. Algorithm sample_ motion_model(ut W
2. 9, =atan2(y'-y,x'-Xx) - 0 mohm ?(»fo- mﬂrs 6Jo WA?
3. Gy =)+ (F-F) (* cootnct. Fawe | ndspedent)
4. 0,0 =0'=0 =0,
5. Amtl =4, , —sample(a, 5., +a2 S ons) C)w rete nosy
6. Oruss = Oy = SAMPLE(y 51+, (61 +60,2))) machin pvamdlen
7. 0, =0, —sample(a, 5,,,+a, 5,,,)
8. x' =x+ brans c0s(0 + 8r0¢1) LSe nb\S\/) ohon Parawﬂlrs
9. V' =y + Sirans sin(0 + 8,0t1) o com pute &M
10. 6" =60+ b,0t1 + Oror2 leinemahes

return [x' y' 8']T

P(KWL(A o l()cal‘iév\ N V\DJI) cM.—JmclfS

Figure 5.9 Sampling from the odometry motion model, using the same parameters
as in Figure 5.8. Each diagram shows 500 samples.

27 3/15/2018

Sampling from Our Motion Model

Start

10 meters

Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose (%0

robot’s internal poses

29 3/15/2018

Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose

X =Y given poses

30 3/15/2018

Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose (30

robot’s internal poses

31 3/15/2018

Odometry Motion Model

» the control vector is made up of the robot odometry

| e
u. =1 _
xt

» use the robot’s internal pose estimates to compute the o

8yus = N(E=T)2 +(F-7)?
%)

rotl

)

rot?2

P BT |

= atan2(y'-y,X'—x)— 6

=0'-0 -5

rotl

32

3/15/2018

Odometry Motion Model

» use the given poses to compute the o

>

trans — \/(x'_x)z —I_ (y'_y)z
)

rotl

= atan2(y'-y,x'-x)—6
=0'—-0-6

rotl

N

o)

rot?2

» as with the velocity motion model, we have to solve the
inverse kinematics problem here

but the problem is much simpler than in the velocity motion model

33 3/15/2018

Odometry Motion Model

» recall the noise model

N

5 — 5 a2 G2
trans trans oy 52, oty (52 ,+625)
5 =& Y,)
rotl — Yrorl a 5mzl ta, 5trans
5 — =& Y, a2
rot?2 rot?2 Ay Oroin+o Oy

which makes it easy to compute the probability densities of
observing the differences in the o

/\

o2 2
p p rOb(trans tmns > é‘trans + a4 (rotl r0t2))

N

A2
p, =prob(o,,,, —0,,,, rotl +a, o,

trans)

o2
p prOb(rot2 r0t29 al r0t2 T aZ 5tmns)

34 3/15/2018

Odometry Motion Model

|. Algorithm motion_model_odometry(x,x’,u)
O =NF=F) + (5 W

= atan2(P—3,¥'—%) — > odometry values (u)

o
S5 ,=0-0-5,,

rot2

%ns Jx=x) + (y'—y)*

5mﬂ = atan2(y -y, x'-x)—6 > values of interest (x,x)
5r0t2 _9' 9 5r0t1

2 o2
p p rOb(rotl rotl S 5r0t1 + a2 5trans)
o2 o2
p prOb(trans trans 5 §trans + a4 (5r0t1 + é‘ rot2))

o2 o2
| O p 3 p rOb(rot2 rot2 5 5rot2 + a2 5trans)

¥ 0 N O U A~ W N

I I return pl °p2 'p3

35

(b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.

36 3/15/2018

Recap

» odometric motion model

control variables were derived from odometry

initial rotation, translation, final rotation

37

3/15/2018

Recap

» velocity motion model

control variables were linear velocity, angular velocity about ICC,
and final angular velocity about robot center

£

c /

X y

[x)

\9)

38 3/15/2018

Recap

» for both models we assumed the control inputs u, were noisy

» the noise models were assumed to be zero-mean additive
with a specified variance

N

Vv Vv Vv
A — +
Q @ Q

noise

noise

actual commanded noise
velocity velocity

2 2
var(v .) =aVv +a,w

var(w, .)= oV’ +o,0’

oise

39 3/15/2018

Recap

» for both models we assumed the control inputs u, were noisy

» the noise models were assumed to be zero-mean additive
with a specified variance

/5£rans /é;rans) /5 trans ,noise \
é?vﬂ, =| Opn |+ éimenome
\ 5r0t2) \ §r0t2 J §r0t2,n0ise)
actual commanded noise

motion motion

S2 S2 2
Var(5trans,n0ise) — a3 5 + a4 (5 + 5 0t2)

trans rotl r
Var(é‘rotl,noise) o al 5r0l1 + aZ 5trans
Var(é‘rotZ,noise) T al 5r0t2 + a2 5”61715‘

40 3/15/2018

Recap

» for both models we studied how to derive p(x, |u,, x,_,)

given
X, current pose
U, control input
X, new pose

find the probability density that the new pose is generated by the
current pose and control input

» required inverting the motion model to compare the actual
with the commanded control parameters

41 3/15/2018

Recap

» for both models we studied how to sample from p(x, |u,, x,_,)

given
X, current pose
U, control input

generate a random new pose x, consistent with the motion model

» sampling from p(x, |u,, x,_,) is often easier than calculating
p(x, |u,,x,) directly because only the forward kinematics
are required

42 3/15/2018

