Motion Models (cont)
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Computing the Density

» to compute

prob(v — ¥, a; v? + ayw?),
prob(w — @, azv* + a,w?), and
prob(7, asv? + agw?)

use the appropriate probability density function;i.e., for zero-
mean Gaussian noise:

1a2

- bze 2b2
T

prob(a, b?) =
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Sampling from the Velocity Motion Model

» suppose that a robot has a map of its environment and it
needs to find its pose in the environment
this is the robot localization problem

several variants of the problem
the robot knows where it is initially

the robot does not know where it is initially

kidnapped robot: at any time, the robot can be teleported to another
location in the environment

» a popular solution to the localization problem is the particle
filter

uses simulation to sample the state density p(xt | u,, xt_l)
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Sampling from the Velocity Motion Model

» sampling the conditional density is easier than computing the
density because we only require the forward kinematics
model

given the control u, and the previous pose x, , find the new pose x,

1

ﬂhv\()aM
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Sampling from the Velocity Motion Model

V

X, =x——sIind
@
V
y.=y+—cost
0

Eqs 5.7, 5.8
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Sampling from the Velocity Motion Model

(5

y

')

(xc +%sin(<9+a)At)\
Y. —=cos(0+wAtr)
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(—2sin @ +Lsin(0 + w At)

~c0s 0 — 2 cos(0 + w Ar)

K w At

*we already derived this for the differential drive!

J

Eqgs 5.9
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Sampling from the Velocity Motion Model

» as with the original motion model, we will assume that given
noisy velocities the robot can also make a small rotation in
place to determine the final orientation of the robot

(\Q\ Svl \lﬁ\" he)

(X (x\ [ in0+%sin(¢9+é)At)\

/

V' |=|y|+]| cos@—=cos(0+adAr)

\9’/ \9/ \ C(A)At+];At )
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Sampling from the Velocity Motion Model

Algorithm sample_motion_model_velocity(u;, z;_;):

G_Q.A.JQVL ne' K

w = w + sample(as v2+ oy w?)

~

vy = sample(as v? + ag w?) g = senall 1a-plecs rohehe-

U g O ~ ol ¥
v’ =12 — =sinf + = sin(0 + WAL) I t

v ~ v Onarmahe
y' =y + £cosb — = cos(f + wAt) :’S:Aj n'::; 5
' =0+0At+ YA velocdes

return x; = (2/,y', 6"
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Sampling from the Velocity Motion Model

» the function sample(b?) generates a random sample from a
zero-mean distribution with variance b?

» Matlab is able to generate random numbers from many
different distributions

help randn
help stats
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How to Sample from Normal or
Triangular Distributions?

» Sampling from a normal distribution

|.  Algorithm sample_normal_distribution(b):

112

2. return 57,; Cand(—b, b) S gple) from vnilomn dishbitan

» Sampling from a triangular distribution
|.  Algorithm sample_triangular_distribution(d):

2.  return \/76 [rand(—b,b) + rand(—b,b)]



Normally Distributed Samples
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For Triangular Distribution
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Rejection Sampling

» Sampling from arbitrary distributions

Algorithm sample_distribution(f,d):

|

2 repeat

3 x = rand(—b,b)

4. y = rand(0, max r € (—b,b)})
5. wuntl (y < f(x)

6

. return x thgi\,\] \1(;\,» ! {"ﬂ"‘"
\\(\Q \M ok 1O s
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Odometry Motion Model

many robots make use of odometry rather than velocity

odometry uses a sensor or sensors to measure motion to
estimate changes in position over time

typically more accurate than velocity motion model, but
measurements are available only after the motion has been
completed

technically a measurement rather than a control

but usually treated as control to simplify the modeling

odometry allows a robot to estimate its pose

but no fixed mapping from odometer coordinates and world
coordinates

in wheeled robots the sensor is often a rotary encoder
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Example Wheel |

These modules require +5V
and GND to power them, and
provide a 0 to 5V output.They

+ e
€ TR
e PLEFTS

provide +5V output when they .y  7es . 4 Tem
i y Y {9 - oA 8
usee" Whlte, and a OV OUtPUt @uuu.%obotics .{.. euuw.%bbﬁics O
== Connection.com = Connection.com

when they "see" black.

These disks are manufactured out
of high quality laminated color
plastic to offer a very crisp black
to white transition.This enables a
wheel encoder sensor to easily
see the transitions.

Source: http://www.active-robots.com/




Odometry Model

» when using odometry, the robot keeps an internal estimate of
its pose at all time

for example, consider a robot moving from pose x;_; to X;

(x")

A X, =y

_ _ o'

-1 =) N
9

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

» the internal pose estimates X;_; to X; are treated as the
control inputs to the robot:

th |A A"*"A’"

_ Jo
u, = | Yrestsd €5 el rech/
ft
(X"
%3 =Y
_ _ o'
= J_/ Y/
7

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

» we require a model of how the robot moves from x;_; to X;

there are an infinite number of possible motions between Xx;_; to Xx;

(x")

A X, =)

_ _ o'

-1 =) N
9

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

» assume the motion is accomplished in 3 steps:

rotate in place by 0,1

5r0t1 (f'\

23 =Y

_ _ 0'

-1 =Y 7/
7,

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

» assume the motion is accomplished in 3 steps:
rotate in place by 0,1

move in a straight line by 0¢qns

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

» assume the motion is accomplished in 3 steps:
rotate in place by 0,1
move in a straight line by 0¢qns

rotate in place by 0, ¢

rot2
5mns
5r0t1 t (f'\
(%) X = f
_ —_ 6'
1| Y N
7

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

, bt b
— ) orc)mct&
5,0 = atan2(y-y,¥-X) -8 |- e & by | U
5r0t2 —
X

Note: bar indicates values in the robot's internal coordinate system



Noise Model for Odometry

» the difference between the true motion of the robot and the
odometry motion is assumed to be a zero-mean random

| oY , WO
value w&* v\ w\\r’\ Wy g

5 — 5 =& 2 2 2
frans trans CZ3 5trans +0(4 (5r0t1 +5r0t2 )
rot?2 rot2 Yo 52 +a, 52

trans




Sampling from the Odometry Motion Model

4

4

25

suppose you are given the previous pose of the robot in world
coordinates (x;_1) and the most recent odometry from the
robot (u;)

how do you generate a random sample of the current pose of
the robot in world coordinates (x;)?
use odometry to compute motion parameters 0,,¢1, Otrans Orot2
use noise model to generate random true motion parameters
S’I"Otl’ Strans» ST'OtZ

use random true motion parameters to compute a random Xt

- ™
Xg-

——

A

W, =
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ok
. A
Sample Odometry Motion Mo}e’l/ or®" v g

e i
l. Algorithm sample_ motion_model(ut W
2. 9, =atan2(y'-y,x'-Xx) - 0 mohm ?(»fo- mﬂrs 6Jo WA?
3. Gy =)+ (F-F) (* cootnct. Fawe | ndspedent )
4. 0,0 =0'=0 =0,
5. Amtl =4, , —sample(a, 5., +a2 S ons) C)w rete nosy
6. Oruss = Oy = SAMPLE(y 51+, (61 +60,2)) ) machin pvamdlen
7. 0, =0, —sample(a, 5,,,+a, 5,,,)
8.  x' =x+ brans c0s(0 + 8r0¢1) LSe nb\S\/) ohon Parawﬂlrs
9. V' =y + Sirans sin(0 + 8,0t1) o com pute &M
10. 6" =60+ b,0t1 + Oror2 leinemahes

return [x' y' 8']T

P(KWL(A o l()cal‘iév\ N V\DJI) cM.—JmclfS



Figure 5.9 Sampling from the odometry motion model, using the same parameters
as in Figure 5.8. Each diagram shows 500 samples.
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Sampling from Our Motion Model

Start

10 meters




Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose (%0

robot’s internal poses
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Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose

X =Y given poses
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Odometry Motion Model

» the key to computing p(x, |u,, x,_;) for the odometry
motion model is to remember that the robot has an internal
estimate of its pose (30

robot’s internal poses
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Odometry Motion Model

» the control vector is made up of the robot odometry

| e
u. =1 _
xt

» use the robot’s internal pose estimates to compute the o

8yus = N(E=T)2 +(F-7)?
%)

rotl

)

rot?2

P BT |

= atan2(y'-y,X'—x)— 6

=0'-0 -5

rotl

32

3/15/2018



Odometry Motion Model

» use the given poses to compute the o

>

trans — \/(x'_x)z —I_ (y'_y)z
)

rotl

= atan2(y'-y,x'-x)—6
=0'—-0-6

rotl

N

o)

rot?2

» as with the velocity motion model, we have to solve the
inverse kinematics problem here

but the problem is much simpler than in the velocity motion model
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Odometry Motion Model

» recall the noise model

N

5 — 5 a2 G2
trans trans oy 52, oty (52 ,+625)
5 =& Y, )
rotl — Yrorl a 5mzl ta, 5trans
5 — =& Y, a2
rot?2 rot?2 Ay Oroin+o Oy

which makes it easy to compute the probability densities of
observing the differences in the o

/\

o2 2
p p rOb( trans tmns > é‘trans + a4 ( rotl r0t2 ))

N

A2
p, =prob(o,,,, —0,,,, rotl +a, o,

trans )

o2
p prOb( rot2 r0t29 al r0t2 T aZ 5tmns)
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Odometry Motion Model

|.  Algorithm motion_model_odometry(x,x’,u)
O =NF=F) + (5 W

= atan2( P—3,¥'—%) — > odometry values (u)

o
S5 ,=0-0-5,,

rot2

%ns Jx=x) + (y'—y)*

5mﬂ = atan2( y -y, x'-x)—6 > values of interest (x,x)
5r0t2 _9' 9 5r0t1

2 o2
p p rOb( rotl rotl S 5r0t1 + a2 5trans)
o2 o2
p prOb( trans trans 5 §trans + a4 (5r0t1 + é‘ rot2 ))

o2 o2
| O p 3 p rOb( rot2 rot2 5 5rot2 + a2 5trans)

¥ 0 N O U A~ W N

I I return pl °p2 'p3
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(b) (c)

Figure 5.8 The odometry motion model, for different noise parameter settings.
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Recap

» odometric motion model

control variables were derived from odometry

initial rotation, translation, final rotation

37
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Recap

» velocity motion model

control variables were linear velocity, angular velocity about ICC,
and final angular velocity about robot center

£

c /

X y

[ x)

\9)
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Recap

» for both models we assumed the control inputs u, were noisy

» the noise models were assumed to be zero-mean additive
with a specified variance

N

Vv Vv Vv
A — +
Q @ Q

noise

noise

actual commanded noise
velocity  velocity

2 2
var(v . ) =aVv +a,w

var(w, . )= oV’ +o,0’

oise
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Recap

» for both models we assumed the control inputs u, were noisy

» the noise models were assumed to be zero-mean additive
with a specified variance

/5£rans /é;rans ) /5 trans ,noise \
é?vﬂ, =| Opn |+ éimenome
\ 5r0t2 ) \ §r0t2 J §r0t2,n0ise )
actual commanded noise

motion motion

S2 S2 2
Var(5trans,n0ise) — a3 5 + a4 (5 + 5 0t2)

trans rotl r
Var(é‘rotl,noise) o al 5r0l1 + aZ 5trans
Var(é‘rotZ,noise) T al 5r0t2 + a2 5”61715‘
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Recap

» for both models we studied how to derive p(x, |u,, x,_,)

given
X, current pose
U, control input
X, new pose

find the probability density that the new pose is generated by the
current pose and control input

» required inverting the motion model to compare the actual
with the commanded control parameters
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Recap

» for both models we studied how to sample from p(x, |u,, x,_,)

given
X, current pose
U, control input

generate a random new pose x, consistent with the motion model

» sampling from p(x, |u,, x,_,) is often easier than calculating
p(x, |u,,x, ) directly because only the forward kinematics
are required
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