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Computing the Density
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 to compute
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Sampling from the Velocity Motion Model
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 suppose that a robot has a map of its environment and it 
needs to find its pose in the environment
 this is the robot localization problem
 several variants of the problem

 the robot knows where it is initially
 the robot does not know where it is initially
 kidnapped robot: at any time, the robot can be teleported to another 

location in the environment

 a popular solution to the localization problem is the particle 
filter
 uses simulation to sample the state density ),|( 1ttt xuxp



Sampling from the Velocity Motion Model
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 sampling the conditional density is easier than computing the 
density because we only require the forward kinematics 
model
 given the control ut and the previous pose xt-1 find the new pose xt



Sampling from the Velocity Motion Model
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Sampling from the Velocity Motion Model
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*we already derived this for the differential drive!



Sampling from the Velocity Motion Model
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 as with the original motion model, we will assume that given 
noisy velocities the robot can also make a small rotation in 
place to determine the final orientation of the robot
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Sampling from the Velocity Motion Model
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Sampling from the Velocity Motion Model
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 the function sample(b2) generates a random sample from a 
zero-mean distribution with variance b2

 Matlab is able to generate random numbers from many 
different distributions

 help randn
 help stats
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How to Sample from Normal or 
Triangular Distributions?

 Sampling from a normal distribution

 Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return  

1. Algorithm sample_triangular_distribution(b):

2. return  
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Normally Distributed Samples

106 samples
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For Triangular Distribution

103 samples 104 samples

106 samples105 samples
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Rejection Sampling

 Sampling from arbitrary distributions

1. Algorithm sample_distribution(f,b): 

2. repeat

3.

4.

5. until  (                )

6. return
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Odometry Motion Model
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 many robots make use of odometry rather than velocity
 odometry uses a sensor or sensors to measure motion to 

estimate changes in position over time
 typically more accurate than velocity motion model, but 

measurements are available only after the motion has been 
completed

 technically a measurement rather than a control
 but usually treated as control to simplify the modeling

 odometry allows a robot to estimate its pose
 but no fixed mapping from odometer coordinates and world 

coordinates

 in wheeled robots the sensor is often a rotary encoder
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Example Wheel Encoders
These modules require +5V 
and GND to power them, and 
provide a 0 to 5V output. They 
provide +5V output when they 
"see" white, and a 0V output 
when they "see" black. 

These disks are manufactured out 
of high quality laminated color 
plastic to offer a very crisp black 
to white transition. This enables a 
wheel encoder sensor to easily 
see the transitions. 

Source: http://www.active-robots.com/



Odometry Model

 when using odometry, the robot keeps an internal estimate of 
its pose at all time
 for example, consider a robot moving from pose ̅ݔ௧ିଵ to ̅ݔ௧
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Odometry Model

 the internal pose estimates ௧ିଵ to ௧ are treated as the 
control inputs to the robot:
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Odometry Model

 we require a model of how the robot moves from ௧ିଵ to ௧
 there are an infinite number of possible motions between ̅ݔ௧ିଵ to ̅ݔ௧
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Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ
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Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ
2. move in a straight line by ߜ௧௥௔௡௦
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Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ
2. move in a straight line by ߜ௧௥௔௡௦
3. rotate in place by ߜ௥௢௧ଶ
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Odometry Model
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Noise Model for Odometry

 the difference between the true motion of the robot and the 
odometry motion is assumed to be a zero-mean random 
value
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Sampling from the Odometry Motion Model
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 suppose you are given the previous pose of the robot in world 
coordinates ( ௧ିଵ) and the most recent odometry from the 
robot ( ௧)

 how do you generate a random sample of the current pose of 
the robot in world coordinates ( ௧)?
1. use odometry to compute motion parameters ߜ௥௢௧ଵ, ,௧௥௔௡௦ߜ ௥௢௧ଶߜ
2. use noise model to generate random true motion parameters 

,መ௥௢௧ଵߜ ,መ௧௥௔௡௦ߜ መ௥௢௧ଶߜ
3. use random true motion parameters to compute a random ݔ௧



Sample Odometry Motion Model
1. Algorithm sample_motion_model(ݑ௧, ݔ௧ିଵ):

2.
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8. ᇱݔ ൌ ݔ ൅ መ௧௥௔௡௦ߜ cos ߠ ൅ መ௥௢௧ଵߜ

9. ᇱݕ ൌ ݕ ൅ መ௧௥௔௡௦ߜ sin ߠ ൅ መ௥௢௧ଵߜ
10. ᇱߠ ൌ ߠ ൅ መ௥௢௧ଵߜ ൅ መ௥௢௧ଶߜ
11. return ݔ′ ′ݕ ′ߠ ்
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Sampling from Our Motion Model

Start



Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1ttt xuxp
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Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 
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Odometry Motion Model
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 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1ttt xuxp
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Odometry Motion Model
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 the control vector is made up of the robot odometry

 use the robot’s internal pose estimates to compute the δ
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Odometry Motion Model
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 use the given poses to compute the δ

 as with the velocity motion model, we have to solve the 
inverse kinematics problem here
 but the problem is much simpler than in the velocity motion model
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Odometry Motion Model
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 recall the noise model

which makes it easy to compute the probability densities of 
observing the differences in the δ
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Odometry Motion Model

22 )'()'( yyxxtrans 
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1. Algorithm motion_model_odometry(x,x’,u)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. return  p1 ꞏ p2 ꞏ p3

odometry values (u)

values of interest (x,x’)
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Recap
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 odometric motion model
 control variables were derived from odometry

 initial rotation, translation, final rotation
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Recap

3/15/201838

 velocity motion model
 control variables were linear velocity, angular velocity about ICC, 

and final angular velocity about robot center
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Recap
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 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance
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Recap
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 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance
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Recap
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 for both models we studied how to derive
 given

 xt-1 current pose  
 ut control input
 xt new pose

find the probability density that the new pose is generated by the 
current pose and control input

 required inverting the motion model to compare the actual
with the commanded control parameters

),|( 1ttt xuxp



Recap

3/15/201842

 for both models we studied how to sample from 
 given

 xt-1 current pose  
 ut control input

generate a random new pose xt consistent with the motion model

 sampling from                       is often easier than calculating
directly because only the forward kinematics 

are required
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