
Motion Models (cont)

3/15/20181



Computing the Density

3/15/20182

 to compute

ଵ
ଶ

ଶ
ଶ , 

ଷ
ଶ

ସ
ଶ , and

ହ
ଶ

଺
ଶ

use the appropriate probability density function; i.e., for zero-
mean Gaussian noise:

ଶ ଵ
ଶగ௕మ

ିభమ
ೌమ

್మ



Sampling from the Velocity Motion Model

3/15/20183

 suppose that a robot has a map of its environment and it 
needs to find its pose in the environment
 this is the robot localization problem
 several variants of the problem

 the robot knows where it is initially
 the robot does not know where it is initially
 kidnapped robot: at any time, the robot can be teleported to another 

location in the environment

 a popular solution to the localization problem is the particle 
filter
 uses simulation to sample the state density ),|( 1ttt xuxp



Sampling from the Velocity Motion Model

3/15/20184

 sampling the conditional density is easier than computing the 
density because we only require the forward kinematics 
model
 given the control ut and the previous pose xt-1 find the new pose xt



Sampling from the Velocity Motion Model

3/15/20185










c

c

y
x



















y
x

xt 1

?






















y
x

xt

t
v


vr 







cos

sin

vyy

vxx

c

c





Eqs 5.7, 5.8



Sampling from the Velocity Motion Model

3/15/20186
















































































t
t
t

y
x

t
ty
tx

y
x

vv

vv

v
c

v
c





















)cos(cos
)sin(sin

)cos(
)sin(

Eqs 5.9

*we already derived this for the differential drive!



Sampling from the Velocity Motion Model

3/15/20187

 as with the original motion model, we will assume that given 
noisy velocities the robot can also make a small rotation in 
place to determine the final orientation of the robot



























































tt
t
t

y
x

y
x

vv

vv










ˆˆ
)ˆcos(cos
)ˆsin(sin

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ



Sampling from the Velocity Motion Model

3/15/20188



Sampling from the Velocity Motion Model

3/15/20189

 the function sample(b2) generates a random sample from a 
zero-mean distribution with variance b2

 Matlab is able to generate random numbers from many 
different distributions

 help randn
 help stats



10

How to Sample from Normal or 
Triangular Distributions?

 Sampling from a normal distribution

 Sampling from a triangular distribution

1. Algorithm sample_normal_distribution(b):

2. return  

1. Algorithm sample_triangular_distribution(b):

2. return  



11

Normally Distributed Samples

106 samples



12

For Triangular Distribution

103 samples 104 samples

106 samples105 samples



13

Rejection Sampling

 Sampling from arbitrary distributions

1. Algorithm sample_distribution(f,b): 

2. repeat

3.

4.

5. until  (                )

6. return



Examples

3/15/201814



Odometry Motion Model

3/15/201815

 many robots make use of odometry rather than velocity
 odometry uses a sensor or sensors to measure motion to 

estimate changes in position over time
 typically more accurate than velocity motion model, but 

measurements are available only after the motion has been 
completed

 technically a measurement rather than a control
 but usually treated as control to simplify the modeling

 odometry allows a robot to estimate its pose
 but no fixed mapping from odometer coordinates and world 

coordinates

 in wheeled robots the sensor is often a rotary encoder



16

Example Wheel Encoders
These modules require +5V 
and GND to power them, and 
provide a 0 to 5V output. They 
provide +5V output when they 
"see" white, and a 0V output 
when they "see" black. 

These disks are manufactured out 
of high quality laminated color 
plastic to offer a very crisp black 
to white transition. This enables a 
wheel encoder sensor to easily 
see the transitions. 

Source: http://www.active-robots.com/



Odometry Model

 when using odometry, the robot keeps an internal estimate of 
its pose at all time
 for example, consider a robot moving from pose ̅ݔ௧ିଵ to ̅ݔ௧



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

 the internal pose estimates ௧ିଵ to ௧ are treated as the 
control inputs to the robot:



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system









 

t

t
t x

x
u 1



Odometry Model

 we require a model of how the robot moves from ௧ିଵ to ௧
 there are an infinite number of possible motions between ̅ݔ௧ିଵ to ̅ݔ௧



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system



Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rot



Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ
2. move in a straight line by ߜ௧௥௔௡௦



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rot trans



Odometry Model

 assume the motion is accomplished in 3 steps:
1. rotate in place by ߜ௥௢௧ଵ
2. move in a straight line by ߜ௧௥௔௡௦
3. rotate in place by ߜ௥௢௧ଶ



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rot trans

2rot



Odometry Model



















y
x

xt 1


















'
'
'


y
x

xt

Note: bar indicates values in the robot's internal coordinate system

1rot trans

2rot

22 )'()'( yyxxtrans 

  )','(atan21 xxyyrot

12 ' rotrot  



Noise Model for Odometry

 the difference between the true motion of the robot and the 
odometry motion is assumed to be a zero-mean random 
value

2
2

2
11

11
ˆ

transrot
rotrot 






2
2

2
21

22
ˆ

transrot
rotrot 





)( 2

2
2
14

2
3

ˆ
rotrottrans

transtrans 







Sampling from the Odometry Motion Model

3/15/201825

 suppose you are given the previous pose of the robot in world 
coordinates ( ௧ିଵ) and the most recent odometry from the 
robot ( ௧)

 how do you generate a random sample of the current pose of 
the robot in world coordinates ( ௧)?
1. use odometry to compute motion parameters ߜ௥௢௧ଵ, ,௧௥௔௡௦ߜ ௥௢௧ଶߜ
2. use noise model to generate random true motion parameters 

,መ௥௢௧ଵߜ ,መ௧௥௔௡௦ߜ መ௥௢௧ଶߜ
3. use random true motion parameters to compute a random ݔ௧



Sample Odometry Motion Model
1. Algorithm sample_motion_model(ݑ௧, ݔ௧ିଵ):

2.

3.

4.

5.

6.

7.

8. ᇱݔ ൌ ݔ ൅ መ௧௥௔௡௦ߜ cos ߠ ൅ መ௥௢௧ଵߜ

9. ᇱݕ ൌ ݕ ൅ መ௧௥௔௡௦ߜ sin ߠ ൅ መ௥௢௧ଵߜ
10. ᇱߠ ൌ ߠ ൅ መ௥௢௧ଵߜ ൅ መ௥௢௧ଶߜ
11. return ݔ′ ′ݕ ′ߠ ்

  )','(atan21 xxyyrot
22 )'()'( yyxxtrans 

12 ' rotrot  

)(ˆ 2
2

2
1111 transrotrotrot sample  

)(ˆ 2
2

2
2122 transrotrotrot sample  

))((ˆ 2
2

2
14

2
3 rotrottranstranstrans sample  



3/15/201827



Sampling from Our Motion Model

Start



Odometry Motion Model

3/15/201829

 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1ttt xuxp



'

















y
x

xt 1 
















'
'
'


y
x

xt

robot’s internal poses



Odometry Motion Model

3/15/201830

 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1ttt xuxp



 



















y
x

xt 1























y
x

xt

given poses



Odometry Motion Model

3/15/201831

 the key to computing                         for the odometry
motion model is to remember that the robot has an internal 
estimate of its pose 

),|( 1ttt xuxp



'

















y
x

xt 1 
















'
'
'


y
x

xt

robot’s internal poses



Odometry Motion Model

3/15/201832

 the control vector is made up of the robot odometry

 use the robot’s internal pose estimates to compute the δ

22 )'()'( yyxxtrans 

  )','(atan21 xxyyrot

12 ' rotrot  









 

t

t
t x

x
u 1



Odometry Motion Model

3/15/201833

 use the given poses to compute the δ

 as with the velocity motion model, we have to solve the 
inverse kinematics problem here
 but the problem is much simpler than in the velocity motion model

22 )'()'(ˆ yyxxtrans 

  )','(atan2ˆ
1 xxyyrot

12
ˆ'ˆ
rotrot  



Odometry Motion Model

3/15/201834

 recall the noise model

which makes it easy to compute the probability densities of 
observing the differences in the δ

2
2

2
11

ˆˆ11
ˆ

transrot
rotrot 






2
2

2
21

ˆˆ22
ˆ

transrot
rotrot 






)ˆˆ(ˆ 2
2

2
14

2
3

ˆ
rotrottrans

transtrans 





))ˆˆ(ˆ,ˆ(prob 2
2

2
14

2
31 rotrottranstranstransp  

)ˆˆ,ˆ(prob 2
2

2
11112 transrotrotrotp  

)ˆˆ,ˆ(prob 2
2

2
21223 transrotrotrotp  



35

Odometry Motion Model

22 )'()'( yyxxtrans 
  )','(atan21 xxyyrot

12 ' rotrot  
22 )'()'(ˆ yyxxtrans 
  )','(atan2ˆ

1 xxyyrot

12
ˆ'ˆ
rotrot  

)ˆˆ,ˆ(prob 2
trans2

2
rot111rot1rot1  p

))ˆˆ(ˆ,ˆ(prob 2
rot2

2
rot14

2
trans3transtrans2  p

)ˆˆ,ˆ(prob 2
trans2

2
rot212rot2rot3  p

1. Algorithm motion_model_odometry(x,x’,u)

2.

3.

4.

5.

6.

7.

8.

9.

10.

11. return  p1 ꞏ p2 ꞏ p3

odometry values (u)

values of interest (x,x’)



3/15/201836



Recap

3/15/201837

 odometric motion model
 control variables were derived from odometry

 initial rotation, translation, final rotation

trans
1rot

2rot


















y
x

xt 1























y
x

xt



Recap

3/15/201838

 velocity motion model
 control variables were linear velocity, angular velocity about ICC, 

and final angular velocity about robot center










c

c

y
x



















y
x

xt 1























y
x

xt



v




Recap

3/15/201839

 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance




























noise

noise

ˆ
ˆ


vvv

actual
velocity

commanded
velocity

noise

2
4

2
3noise

2
2

2
1noise

)var(

)var(









v

vv



Recap

3/15/201840

 for both models we assumed the control inputs ut were noisy
 the noise models were assumed to be zero-mean additive 

with a specified variance

actual
motion

commanded
motion

noise



















































noiserot

noiserot

noisetrans

rot

rot

trans

rot

rot

trans

,2

,1

,

2

1

2

1

ˆ
ˆ
ˆ













2
2

2
21,2

2
2

2
11,1

2
2

2
14

2
3,

ˆˆ)var(

ˆˆ)var(

)ˆˆ(ˆ)var(

transrotnoiserot

transrotnoiserot

rotrottransnoisetrans















Recap

3/15/201841

 for both models we studied how to derive
 given

 xt-1 current pose  
 ut control input
 xt new pose

find the probability density that the new pose is generated by the 
current pose and control input

 required inverting the motion model to compare the actual
with the commanded control parameters

),|( 1ttt xuxp



Recap

3/15/201842

 for both models we studied how to sample from 
 given

 xt-1 current pose  
 ut control input

generate a random new pose xt consistent with the motion model

 sampling from                       is often easier than calculating
directly because only the forward kinematics 

are required

),|( 1ttt xuxp

),|( 1ttt xuxp
),|( 1ttt xuxp


